葡萄糖对三角褐指藻生长、岩藻黄素含量及相关基因表达的影响

刘浩,杭雨晴,朱帅旗,王何瑜,龚一富

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (14) : 1230-1234.

PDF(1292 KB)
PDF(1292 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (14) : 1230-1234. DOI: 10.11669/cpj.2016.14.017
论著

葡萄糖对三角褐指藻生长、岩藻黄素含量及相关基因表达的影响

  • 刘浩,杭雨晴,朱帅旗,王何瑜,龚一富*
作者信息 +

Effects of Glucose on the Growth of Phaeodactylum tricornutum, Fucoxanthin Content and Related Gene Expression

  • LIU Hao, HANG Yu-qing, ZHU Shuai-qi, WANG He-yu, GONG Yi-fu*
Author information +
文章历史 +

摘要

目的 研究葡萄糖对三角褐指藻细胞生长、岩藻黄素含量和岩藻黄素生物合成相关基因表达的影响。方法 本实验以分光光度法研究葡萄糖对三角褐指藻生长影响,HPLC研究藻细胞岩藻黄素含量,荧光定量聚合酶链式反应(PCR)研究岩藻黄素生物合成相关基因表达。结果 在平台期末,葡萄糖处理组藻细胞密度均比对照组高,说明葡萄糖促进三角褐指藻细胞生长。HPLC结果表明,随着葡萄糖浓度的升高,三角褐指藻细胞中岩藻黄素含量呈逐渐下降的趋势。其中,葡萄糖为50 mg·L-1时,岩藻黄素含量最低,为0.26 mg·g -1干重, 比对照组降低了67.5%,说明葡萄糖抑制了三角褐指藻岩藻黄素的生物合成。荧光定量PCR结果表明,10~50 mg·L-1葡萄糖处理三角褐指藻时,岩藻黄素生物合成相关基因zeppyszdslcybcrtisopds的表达量均比对照组低。该结果与岩藻黄素含量变化一致。结论 葡萄糖抑制三角褐指藻岩藻黄素的生物合成是通过下调岩藻黄素生物合成相关基因表达来实现的。

Abstract

OBJECTIVE To explore the effects of glucose on the growth of algae, the content of fucoxanthin, and expressions of genes related to biosynthesis of fucoxanthin. METHODS The cell growth of algae induced by glucose was researched by using spectrophotometric method. The content of fucoxanthin was measured by HPLC. The expressions of the genes which were related to biosynthesis of fucoxanthin were detected by using quantitative PCR. RESULTS At the end of the platform period, the density of cells treated by glucose was higher than that of the control group. The growth of P. tricornutum was promoted by glucose. The result of HPLC analysis showed that fucoxanthin content in the algae treated by different concentrations of glucose was decreased than that in the control group. When the concentration of glucose reached 50 mg·L-1, the content of fucoxanthin was the lowest (0.26 mg·g-1 DW), which was 67.5% lower than the control, indicating that glucose inhibited the biosynthesis of fucoxanthin in P. tricornutum. RT-qPCR result showed that the expression of genes related to the biosynthesis pathway of fucoxanthin, i.e., zep, pys, zds, lcyb, crtiso, and pds, were all lower than those of the control when the concentration of glucose was in the range from 10 to 50 mg·L-1. This result was consistent with the change of fucoxanthin content. CONCLUSION This result further illustrates that glucose may inhibit the biosynthesis of fucoxanthin in P. tricornutum by down-regulating the expression of related genes.

关键词

葡萄糖 / 三角褐指藻 / 生长 / 岩藻黄素 / 基因表达

Key words

glucose / P. tricornutum / growth / fucoxanthin / gene expression

引用本文

导出引用
刘浩,杭雨晴,朱帅旗,王何瑜,龚一富. 葡萄糖对三角褐指藻生长、岩藻黄素含量及相关基因表达的影响[J]. 中国药学杂志, 2016, 51(14): 1230-1234 https://doi.org/10.11669/cpj.2016.14.017
LIU Hao, HANG Yu-qing, ZHU Shuai-qi, WANG He-yu, GONG Yi-fu. Effects of Glucose on the Growth of Phaeodactylum tricornutum, Fucoxanthin Content and Related Gene Expression[J]. Chinese Pharmaceutical Journal, 2016, 51(14): 1230-1234 https://doi.org/10.11669/cpj.2016.14.017
中图分类号: R284   

参考文献

[1] HEO S J, JEON Y J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-binduced cell damage. J Photochem Photobiol B, 2009,95(2):101-107.
[2] LIU C L, LIANG A L, HU M L. Protective effects of fucoxanthin against ferric nitrilotriacetate-induce doxidative stress in murine hepatic BNL CL.2 cells. Toxicol In Vitro, 2011,25(7):1314-1319.
[3] DE J M, MATNA T. Of mice and humans:are they the same? Implications in cancer translational research. J Nucl Med, 2010, 51(4):501-504.
[4] YAMAMOTO K, ISHIKAWA C, KATANO H, el al. Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary effusion lymphomas. Cancer Lett, 2011,300(2):225-234.
[5] WOO M N, JEON S M, SHIN Y C, et al. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutrition Food Res, 2009, 53(12):1603-1611.
[6] WOO M N, JEON S M, KIM H J. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact, 2010, 186(3):316-322.
[7] HAYATO M, MASASHI H, TOKUTAKE S. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-ay mice. J Agric Food Chem, 2007,55(19):7701-7706.
[8] TATSUYA S, KIMINORI M, REIKO A. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. J Agric Food Chem, 2006,54(20):9805-9810.
[9] KENJI S, KAZUHIRO O, ILIYANA I. Effects of fucoxanthin on lipopolysaccharide induced inflammation in vitro and in vivo. Exp Eye Res,2005,81(4):422-428.
HEO S J, YOON W J, KIM K N. et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol, 2010,48(4):2045-2051.
SOOJIN H, YOUJIN J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage . J Photochem Photobiol B, 2009, 95(2):101-107.
GOUVEIA L, OLIVEIRA A C. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol, 2009, 36(2):269-274.
CHISTI Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3):294-306.
KIM S M, JUNG Y J, KWON O N, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol, 2012, 166(7):1843-1855.
ZHU S Q, GONG Y F, LIU H, et al. Effects of ammonium cerous sulfate on fucoxanthin content in Phaeodactylum tricornutum and research of transcriptional differences. J Chin Soc Rare Earths (中国稀土学报), 2014,32(6):750-757.
WANG S H. Studies on the isolation, identification, and antitumor bioactivities of fucoxanthin in algae. Univ Chin Acad Sci (中国海洋大学), 2010.
ZANG Z R. Screening and pilot scale cultivation of fucoxanthin-rich microalgae . Univ Chin Acad Sci(中国科学院大学), 2014.
WANG R R, YAN G Y, WANG Q X, et al. Effects of exogenous glucose on growth and hydrogen production of Chlamydomonas reinhardtii. Bull Bot Res (植物研究), 2010, 30(3):355-359 .
XIE J L, ZHANG Y X, Li Y G, et al. Mixotrophic cultivation of Platy-Monas subcordiformis. J Appl Phycol, 2001, 13(4):343-347.
RYU J Y, SONG J Y, LEE J M, et al. Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the Cyanobacterium synechocystis sp. PCC 6803. J Biol Chem, 2004, 279(24):25320-25325.
FU R, WANG H Y, PEI G F. A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiology Res, 2012, 6(5):1041-1047.
YE L, JIANG X M, MAO X X, et al. Effects of temperature, light intensity and salinity on the growth, total lipid and fatty acid of Phaeodactylum tricornutum mutant. Chin J Ecology (生态学杂志), 2015, 34(2):454-462.
CHEN D X, HUANG S L. Determination of eight comoponents in compound dibazol and hydrochlorothiazide capsuies by HPLC. Chin Pharm J (中国药学杂志), 2009,44(17):1346-1349.
LIU X J, DUAN S S, LI A F. Effects of organic carbon sources and nitrogen sources on the growth of Phaeodactylum tricornutum. Acta Hydrobiol Sin (水生生物学报), 2008, 32(2):252-257.
YANG F F. Study on the effects of organic carbon sources on the growth of Microcystis teruginosa under different nutrient conditions. Shanghai Jiaotong University (上海交通大学), 2012.
WANG L L, LI H Y, GONG Y F. The effects of arachidonic acid (AA) on the cell growth and astaxanthin content in alga Haematococcus pluvialis. Fisheries Sci (水产科学), 2010, 29(3):142-146.
WANG X W, WANG L L, GONG Y F, et al. The effects methyl jasmonate (MeJA) on the astaxanthin production and dxs gene expression of Haematococcus pluvialis. J Fisheries China (水产学报), 2011, 35(12):1822-1828.
MA W M, QIAN Z P, SUN L, et al. Mixotrophic cultivation of Microcystis viridis (A. Br.) Lemm. Bull Bot Res (植物研究), 2002, 22(2):241-246.
ZHANG C, WANG Y, FU J, et al. Transcriptomic analysis of cut tree peony with glucose supply using the RNA-Seq technique. Plant Cell Reports, 2014, 33(1):111-129.
ZHU S Q, GONG Y F, LIU H, et al. Analysis of the Dunaliella viridis transdriptome and related pathways following glucose induction. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2015, 31(8):857-865.
LALONDE S. The dual function of sugar carriers. Transport and sugar sensing. Plant Cell, 1999, 11(4):707-726.
ROLLAND F, WINDERICKX J, THEVELEIN J M. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci, 2001, 26(5):310-317.
ZHENG Y, QUINN A H, SRIRAM G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum. Microbl Cell Fact, 2013, 12(22):547-554.

基金

浙江省科技厅重点科技创新团队资助项目(2012R10029-07,2010R50029);宁波科技攻关项目(2013C10018);宁波市农村创新创业项目(2014C91023);浙江省大学生科技创新活动计划暨新苗人才计划资助项目(2014R405050);宁波大学优秀学位论文培育基金资助项目(py2014020)
PDF(1292 KB)

Accesses

Citation

Detail

段落导航
相关文章

/